Table

Prawn comes with table support out of the box. Tables can be styled in whatever way you see fit.
The whole table, rows, columns and cells can be styled independently from each other.

The examples show:

» How to create tables

What content can be placed on tables

Subtables (or tables within tables)

How to style the whole table

» How to use initializer blocks to style only specific portions of the table

table/

Creating tables with Prawn is fairly easy. There are two methods that will create tables for us
t abl e and make_t abl e.

Both are wrappers that create a new Pr awn: : Tabl e object. The difference is that t abl e calls the
dr aw method after creating the table and nake_t abl e only returns the created table, so you have
to call the dr aw method yourself.

The most simple table can be created by providing only an array of arrays containing your data
where each inner array represents one row.

t = make_table([["this is the first row'],
["this is the second row']])

t.draw

move_down 20

table([["short", "short", "l oooooooooooooooooooong”],
["short", "l oooooooooooooooooooong”, "short"],
["| oooooooooo0000000000Ng", "short", "short"]])

this is the first row

this is the second row

short short l00000000000000000000NQ

short |00000000000000000000Ng | short

l00000000000000000000Ng | short short

table/

There are five kinds of objects which can be put in table cells:

1. String: produces a text cell (the most common usage)

2. Prawn: : Tabl e: : Cel |

3. Prawn: : Tabl e

4. Array

5. Images

Whenever a table or an array is provided as a cell, a subtable will be created (a table within a cell).

If you'd like to provide a cell or table directly, the best way is to use the nmake_cel |l and
make_t abl e methods as they don't call dr aw on the created object.

To insert an image just provide a hash with an with an : i mage key pointing to the image path.

cell _1 make_cell (:content => "this row content conmes directly ")
cell _2 make_cel |l (: content => "from cell objects")

two_di nensional _array = [["..."], ["subtable froman array"], ["
nmy_table = make_table([["..."], ["subtable fromanother table"], [’

i mage_path = "#{Prawn: : DATADI R}/ i mages/ stef. | pg"

table([["just a regular row', "", "", "blah blah blah"],
[cell _1, cell_2, "", ""],
["*, "", two_dinmensional array, ""],
["just another regular row', ,
[{:image => image_path}, "", ny_table, ""]])

1,

just a regular row blah blah blah

this row content comes directly | from cell objects

subtable from an array

just another regular row

subtable from another table

table/

If the table cannot fit on the current page it will flow to the next page just like free flowing text. If
you would like to have the first row treated as a header which will be repeated on subsequent
pages set the : header option to true.

data = [["This row shoul d be repeated on every new page"]]
data += [["..."]] * 30

tabl e(data, :header => true)

This row should be repeated on every new page

This row should be repeated on every new page

table/

The t abl e() method accepts a : posi ti on argument to determine horizontal position of the
table within its bounding box. It can be : | eft (the default), : center, :right, or a number
specifying a distance in PDF points from the left side.

data = [["The quick brown fox junped over the |lazy dogs."]] * 2

text "Left:"
table data, :position => :left
nove_down 10

text "Center:"
table data, :position => :center
nmove_down 10

text "Right:'
tabl e data, :position => :right
move_down 10

text "100pt:"
table data, :position => 100

Left:

The quick brown fox jumped over the lazy dogs.

The quick brown fox jumped over the lazy dogs.

Center:
The quick brown fox jumped over the lazy dogs.
The quick brown fox jumped over the lazy dogs.
Right:
The quick brown fox jumped over the lazy dogs.
The quick brown fox jumped over the lazy dogs.
100pt:

The quick brown fox jumped over the lazy dogs.

The quick brown fox jumped over the lazy dogs.

table/

Prawn will make its best attempt to identify the best width for the columns. If the end result isn't
good, we can override it with some styling.

Individual column widths can be set with the : col unm_wi dt hs option. Just provide an array with
the sequential width values for the columns or a hash were each key-value pair represents the
column 0-based index and its width.

data = [["this is not quite as |ong as the others",
"here we have a line that is long but with smaller words",
“this is so very | 0000000000000000000000000000000Nng"]]

text "Prawn trying to guess the col unm w dt hs"
t abl e(dat a)
nmove_down 20

text "Manually setting all the colum w dths"
tabl e(data, :columm_w dths => [100, 200, 240])
move_down 20

text "Setting only the |ast colum wi dth"
tabl e(data, :colum_w dths => {2 => 240})

Prawn trying to guess the column widths

this is not quite as long | here we have a line that is long but | this is so very
as the others with smaller words [0000000000000000000000000000
ooong

Manually setting all the column widths

this is not quite | here we have a line that is long but | this is so very
as long as the with smaller words [0000000000000000000000000000000NQ
others

Setting only the last column width

this is not quite as here we have a line that is long | this is so very
long as the others but with smaller words [0000000000000000000000000000000NQ

table/

The default table width depends on the content provided. It will expand up to the current bounding
box width to fit the content. If you want the table to have a fixed width no matter the content you
may use the : wi dt h option to manually set the width.

text "Normal width:"
table [%{ A B C]]
move_down 20

text "Fixed width:"
table(["W[A B C]], :width => 300)
move_down 20

text "Normal width:"
table([["A", "Blah "
nmove_down 20

text "Fixed width:"
table([["A", "Blah " , "C']], :width => 300)

Normal width:
A|B|C

Fixed width:
A B C

Normal width:

A | Blah Blah Blah Blah Blah Blah Blah Blah Blah Blah Blah Blah Blah Blah Blah Blah Blah Blah | C
Blah Blah

Fixed width:

A | Blah Blah Blah Blah Blah Blah Blah Blah Blah C
Blah Blah Blah Blah Blah Blah Blah Blah Blah
Blah Blah

table/

One of the most common table styling techniques is to stripe the rows with alternating colors.

There is one helper just for that. Just provide the : r ow_col or s option an array with color values.

data = [["This row shoul d have one color"],
["And this row shoul d have anot her"]]

data += [["..."]] * 10

tabl e(data, :row colors => ["FOFOFO", "FFFFCC'])

This row should have one color

And this row should have another

table/

To style all the table cells you can use the : cel | _st yl e option with the table methods. It accepts
a hash with the cell style options.

Some straightforward options are wi dt h, hei ght , and paddi ng. All three accept numeric values
to set the property.

paddi ng also accepts a four number array that defines the padding in a CSS like syntax setting
the top, right, bottom, left sequentially. The default is 5pt for all sides.

data = [["Look at how the cells will | ook when styl ed"
["They probably won't | ook the same", "", ""]

]

{:width => 160, :height => 50, :padding => 12}.each do | property, val ue
text "Cell's #{property}: #{value}"

tabl e(data, :cell _style => {property => val ue})
nove_down 20
end

text "Padding can also be set with an array: [0, 0, 0, 30]"
tabl e(data, :cell_style => {:padding => [0, 0, 0, 30]})

Cell's width: 160

Look at how the cells will
look when styled

They probably won't look
the same

Cell's height: 50

Look at how the cells will look when styled

They probably won't look the same

Cell's padding: 12

Look at how the cells will look when styled

They probably won't look the same

Padding can also be set with an array: [0, 0, 0, 30]

Look at how the cells will look when styled
They probably won't look the same

table/

The bor der s option accepts an array with the border sides that will be drawn. The default is
[:top, :bottom :left, :right].

bor der _wi dt h may be set with a numeric value.

Both bor der _col or and backgr ound_col or accept an HTML like RGB color string ("FF0000")

Look at how the cells will | ook when styl ed"
"They probably won't | ook the same", "", ""]

:borders => [:top, :left],
:border_width => 3,
: border _col or => "FF0000"}. each do | property, value

text "Cell #{property}: #{value.inspect}"
tabl e(data, :cell_style => {property => val ue})
move_down 20

end

text "Cell background_col or: FFFFCC'
tabl e(data, :cell_style => {:background col or => "FFFFCC'})

Cell borders: [:top, :left]

Look at how the cells will look when styled

They probably won't look the same

Cell border_width: 3

I Look at how the cells will look when styled

1l
I They probably won't look the same I I I

Cell border_color: "FF0000"

Look at how the cells will look when styled

They probably won't look the same

Cell background_color: FFFFCC

Look at how the cells will look when styled

They probably won't look the same

table/

The border _I i nes option accepts an array with the styles of the border sides. The default is
[:solid, :solid, :solid, :solid].

bor der _| i nes must be set to an array.

"Look at how the cell border |ines can be m xed",
"dotted top border", "", ""],

"solid right border", .

"dotted bottom border",

"dashed | eft border"

]

text "Cell :border_lines => [:dotted, :solid, :dotted, :dashed]"

tabl e(data, :cell_style =>
{ :border_lines => [:dotted, :solid, :dotted, :dashed] })

' dashed left border

table/

Text cells accept the following options: al i gn, font, font_styl e, i nline_fornmat, kerning,
| eadi ng, min_font_size, overflow, rotate, rotate_around, single_|line, size,
text col or,andvali gn.

Most of these style options are direct translations from the text methods styling options.

data = [["Look at how the cells will | ook when styled"
["They probably won't | ook the same”, "", ""]

]

table data, :cell_style => { :font => "Tines-Roman", :font_style => :italic }
move_down 20

table data, :cell_style => { :size => 18, :text_color => "346842" }
nmove_down 20

table [["Just sone <i >inline</i>"
["<col or rgb="FFOOFF >styl es</ col or> bei ng applied here"
:cell _style =>{ :inline format => true }

move_down 20

table [["1", "2", "3", "rotate"]], :cell_style => { :rotate => 30 }
move_down 20

table data, :cell _style => { :overflow => :shrink _to fit, :min_font_size => 8,
:width => 60, :height => 30 }

Look at how the cells will look when styled

They probably won't ook the same

Look at how the cells will look when styled

They probably won't look the same

Just SOME inline

styles being applied here

£+ C.
N RS

Look at how
the cells will

They probably
won't look the

table/

Prawn can insert images into a table. Just pass a hash into t abl e() with an : i mage key pointing
to the image.

You can pass the :scale, :fit, :position, and :vposition arguments in alongside
. 1 mage; these will function just as ini mage() .

The : i mage_w dt h and : i mrage_hei ght arguments set the width/height of the image within the
cell, as opposed to the : wi dt h and : hei ght arguments, which set the table cell's dimensions.

i mage = "#{Prawn: : DATADI R}/ i mages/ pr awn. png"

table [
["Standard i mage cell", i i mge}],
[":scale => 0.5", i i mge, :scale => 0.5}],
[*:fit => [100, 200]", i i mge, :fit => [100, 200]}],
[

"1 mage_hei ght => 50,
:image_w dth => 100", o i mage, :inmage_hei ght => 50,
:image_width => 100}],
":position => :center", i i mge, :position => :center}],
":vposition => :center", {:i i mge, :vposition => :center,
: hei ght => 200}]
], :width => bounds.w dth

Standard image cell

:scale => 0.5

-fit => [100, 200]

:image_height => 50,
:image_width => 100

:position => :center

‘vposition => :center

table/

Table cells can span multiple columns, rows, or both. When building a cell, use the hash argument
constructor with a : col span and/or : rowspan argument. Row or column spanning must be
specified when building the data array; you can't set the span in the table's initialization block. This
is because cells are laid out in the grid before that block is called, so that references to row and
column numbers make sense.

Cells are laid out in the order given, skipping any positions spanned by previously instantiated
cells. Therefore, a cell with r owspan: 2 will be missing at least one cell in the row below it. See
the code and table below for an example.

It is illegal to overlap cells via spanning. A Prawn: : Errors: : I nval i dTabl eSpan error will be
raised if spans would cause cells to overlap.

tabl e([
["A", {:content => "2x1", :colspan => 2}, "B"],
[{:content => "1x2", :rowspan => 2}, "C', "D', "E"],

[{:content => "2x2", :colspan => 2, :rowspan => 2}, "F'],
["G', "H]
1)

A |2x1 |B
1x2|C|D|E

2x2 | F
G H

table/

Prawn: : Tabl e#initi al i ze takes a : bef or e_renderi ng_page argument, to adjust the way
an entire page of table cells is styled. This allows you to do things like draw a border around the
entire table as displayed on a page.

The callback is passed a Cells object that is numbered based on the order of the cells on the page
(e.g., the first row on the page is cel | s. r ow(0)).

table([["foo", "bar", "baz"]] * 40) do |t|
t.cells.border width =1
t.before_renderi ng_page do | page|
page. row(0) . border _top_wi dth
page. row(- 1) . bor der _bottom w dt h

page. col um(0) . border | eft_w dth
page. col um(-1). border _right_wi dth
end

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo | bar | baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

foo

bar

baz

table/

All of the previous styling options we've seen deal with all the table cells at once.

With initializer blocks we may deal with specific cells. A block passed to one of the table methods
(Prawn: : Tabl e. new, Prawn: : Docunent #t abl e, Prawn: : Docunment #make_t abl e) will be
called after cell setup but before layout. This is a very flexible way to specify styling and layout
constraints.

Just like the Prawn: : Docunent . gener at e method, the table initializer blocks may be used with
and without a block argument.

The table class has three methods that are handy within an initializer block: cel I s, rows and
col umms. All three return an instance of Pr awn: : Tabl e: : Cel | s which represents a selection of
cells.

cel | s return all the table cells, while rows and col uims accept a number or a range as
argument which returns a single row/column or a range of rows/columns respectively. (r ows and
col umms are also aliased as r owand col umm)

The Prawn: : Tabl e: : Cel | s class also defines r ows and col uimms so they may be chained to
narrow the selection of cells.

All of the cell styling options we've seen on previous examples may be set as properties of the
selection of cells.

data = [["Header",
["Data row',
["Anot her data row',

tabl e(data) do
cel | s. paddi ng 12
cel |l s. borders [1

row(0). borders
row(0). border_wi dth
row(0).font_style

[:bottom
2
: bol d

colums(0..1).borders = [:right]

row(0).colums(0..1).borders = [:bottom :right]
end

Header AAAAA B

Data row C DDDDD

Another data row E F

table/

Another way to reduce the number of cellsistofi |l t er the table.

filter is just like Enuner abl e#sel ect. Pass it a block and it will iterate through the cells
returning a new Prawn: : Tabl e: : Cel | s instance containing only those cells for which the block
was not false.

"Jan Sal es",
17, 89],

62, 30],
71, 47]

data = [["Itenl, "Feb Sal es"],
["Oven",
["Fridge",
["M crowave"”

]

do
cells.colums(l..-1).rows(1..-1)

tabl e(dat a)
val ues =

val ues.filter do |cell
< 40

bad_sal es =
cell.content.to_i

end

bad_sal es. background_col or = " FFAAAA"

val ues.filter do |cell
> 70

good_sal es =
cell.content.to_i
end

" AAFFAA!

good_sal es. background_col or =
end

Item Jan Sales | Feb Sales
Oven 17 89
Fridge 62 30
Microwave | 71 47

table/

We've seen how to apply styles to a selection of cells by setting the individual properties. Another
option is to use the st yl e method

styl e lets us define multiple properties at once with a hash. It also accepts a block that will be
called for each cell and can be used for some complex styling.

table([[""] * 8] * 8) do
cells.style(:width => 24, :height => 24)

cells.style do |c]|
c. background_color = ((c.row + c.colum) % 2).zero? ? '000000" : "ffffff’
end
end

	Table
	Basics
	Creation
	Content and subtables
	Flow and header
	Position

	Styling
	Column widths
	Width
	Row colors
	Cell dimensions
	Cell borders and bg
	Cell border lines
	Cell text
	Image cells
	Span
	Before rendering page

	Initializer Block
	Basic block
	Filtering
	Style

